Objectives:

- Use graphs of functions to estimate function values and find domains, ranges, y-intercepts, and zeros of functions.
- Explore symmetries of graphs, and identify even and odd functions.

Common Core State Standards: A-REI.10, F-IF.5, F-IF.7b, F-IF.8

We:

1. The linear graph of a function for net profit/loss given x units sold has an x-intercept of 200. What does this mean?

Ex. 1]

ADVERTISING The function $f(x) = -5x^2 + 50x$ approximates the profit at a toy company, where x is marketing costs and f(x) is profit. Both costs and profits are measured in tens of thousands of dollars.

- a. Use the graph to estimate the profit when marketing costs are \$30,000. Confirm your estimate algebraically.
- b. Use the graph to estimate marketing costs when the profit is \$1,250,000. Confirm your estimate algebraically.

Ex. 2]

Use the graph of f to find the domain and range of the function.

Ex. 3] Use the graph of each function to approximate its *y*-intercept. Then find the *y*-intercept algebraically.

Ex. 4]

Use the graph of $f(x) = x^3 - x$ to approximate its zeros. Then find its zeros algebraically.

Tests For Symmetry:

KeyConcept Tests for Symmetry		
Graph of a relation is symmetric with respect to the x-axis if and only if for every point (x, y) on the graph, the point (x, -y) is also on the graph.	(x, y) x	Algebraic feat Replacing y with — y produces an equivalent equation.
The graph of a relation is symmetric with respect to the y-axis if and only if for every point (x, y) on the graph, the point (-x, y) is also on the graph.	(-x, y) (x, y)	Replacing x with $-x$ produces an equivalent equation.
The graph of a relation is symmetric with respect to the origin if and only if for every point (x, y) on the graph, the point $(-x, -y)$ is also on the graph.	(-x, -y)	Replacing x with —x and y with —y produces an equivalent equation.

Ex. 5]

Use the graph of each equation to test for symmetry with respect to the x-axis, the y-axis, and the origin. Support the answer numerically. Then confirm algebraically.

Even vs. Odd functions:

KeyConcept Even and Odd Functions			
Type of Function Algebraids Test			
Functions that are symmetric with respect to the y-axis are called even functions.	For every x in the domain of f_i f(-x) = f(x).		
Functions that are symmetric with respect to the origin are called odd functions.	For every x in the domain of f , $f(-x) = -f(x)$.		

Can You Draw It?

- a. An even degree function that IS an even function.
- c. An odd degree function that IS an odd function.

- b. An even degree function that is NOT an even function.
- d. An odd degree function that IS NOT an odd function.

Ex. 6] Graph each function using a GC. Anlyze the graph to determine whether each function is even, odd or neither. Confirm algebraically & numerically. Describe all symmetries.

a.
$$f(x) = x^2 - 4x + 4$$

b.
$$f(x) = x^2 - 4$$

c.
$$f(x) = x^3 - 3x^2 - x + 3$$