Inverses Day 2 (15) §6.4 Notes Rational Exponents Algebra 2 Name_____

Date Hr

Example 1 - Find the inverse " $f^1(x)$ " of each of the following functions.

a.
$$y = 10x + 28$$

b.
$$y = -\frac{1}{64}x^3$$

KEY CONCEPT

For Your Notebook

Inverse Functions

Functions *f* and *g* are inverses of each other provided:

$$f(g(x)) = x$$
 and $g(f(x)) = x$

The function g is denoted by f^{-1} , read as "f inverse."

Example 2 - Determine if the following functions are inverses of each other.

a.
$$f(x) = x + 8$$

b.
$$f(x) = 4x + 2$$

$$f^{-1}(x) = 8 - x$$

$$f^{-1}(x) = \frac{1}{4}x - \frac{1}{2}$$

Example 3 – A small company produces greeting cards. The cost C (in dollars) of producing n greeting cards per month can be modeled by the function C = 360 + 0.60n.

- a. Find the inverse of the model.
- b. Use the inverse function to find the number of greeting cards produced in a month in which the company's total cost to produce the cards was \$615.

Example 4 -
$$f(x) = x^3 + 6$$

a. Find $f^{-1}(x)$

c. Graph f(x) and $f^{-1}(x)$

Is the inverse a function?

Yes No

b. Verify that f(x) and $f^{-1}(x)$ are inverse functions. Show work!

Example 5 -
$$f(x) = {}^{-2}/_3 x + {}^{1}/_6$$

a. Find $f^{-1}(x)$

c. Graph f(x) and $f^{-1}(x)$

Is the inverse a function?

Yes No

b. Verify that f(x) and $f^{-1}(x)$ are inverse functions. Show work!

Example 6 - The average price P (in dollars) for a National Football League ticket can be modeled by $P = 35t^{0.192}$, where t is the number of years since 1995.

- a. Find the inverse model that gives time as a function of the average ticket price.
- b. Use the inverse power model from part a. to predict the year when the average ticket price will reach \$58.

Assignment - P. 442-444 #1-2, 3-41 (odd), 46, 49.